Pinecone v2.0.2 published on Wednesday, Nov 5, 2025 by pinecone-io
pinecone.get
Start a Neo task
Explain and create a pinecone.get resource
Index data source
Using get
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function get(args: GetArgs, opts?: InvokeOptions): Promise<GetResult>
function getOutput(args: GetOutputArgs, opts?: InvokeOptions): Output<GetResult>def get(embed: Optional[GetEmbed] = None,
name: Optional[str] = None,
spec: Optional[GetSpec] = None,
status: Optional[GetStatus] = None,
opts: Optional[InvokeOptions] = None) -> GetResult
def get_output(embed: Optional[pulumi.Input[GetEmbedArgs]] = None,
name: Optional[pulumi.Input[str]] = None,
spec: Optional[pulumi.Input[GetSpecArgs]] = None,
status: Optional[pulumi.Input[GetStatusArgs]] = None,
opts: Optional[InvokeOptions] = None) -> Output[GetResult]func Get(ctx *Context, args *GetArgs, opts ...InvokeOption) (*GetResult, error)
func GetOutput(ctx *Context, args *GetOutputArgs, opts ...InvokeOption) GetResultOutput> Note: This function is named Get in the Go SDK.
public static class Get
{
public static Task<GetResult> InvokeAsync(GetArgs args, InvokeOptions? opts = null)
public static Output<GetResult> Invoke(GetInvokeArgs args, InvokeOptions? opts = null)
}fn::invoke:
function: pinecone:index/get:get
arguments:
# arguments dictionaryThe following arguments are supported:
- Name string
- Index name
- Embed
Pinecone
Database. Pinecone. Inputs. Get Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Spec
Pinecone
Database. Pinecone. Inputs. Get Spec - Status
Pinecone
Database. Pinecone. Inputs. Get Status
- name String
- Index name
- embed Property Map
- Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- spec Property Map
- status Property Map
get Result
The following output properties are available:
- Deletion
Protection string - Dimension int
- Embed
Pinecone
Database. Pinecone. Outputs. Get Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Host string
- Id string
- Metric string
- Name string
- Index name
- Spec
Pinecone
Database. Pinecone. Outputs. Get Spec - Status
Pinecone
Database. Pinecone. Outputs. Get Status - Dictionary<string, string>
- Vector
Type string
- Deletion
Protection string - Dimension int
- Embed
Get
Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Host string
- Id string
- Metric string
- Name string
- Index name
- Spec
Get
Spec - Status
Get
Status - map[string]string
- Vector
Type string
- deletion
Protection String - dimension Integer
- embed
Get
Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host String
- id String
- metric String
- name String
- Index name
- spec
Get
Spec - status
Get
Status - Map<String,String>
- vector
Type String
- deletion
Protection string - dimension number
- embed
Get
Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host string
- id string
- metric string
- name string
- Index name
- spec
Get
Spec - status
Get
Status - {[key: string]: string}
- vector
Type string
- deletion_
protection str - dimension int
- embed
Get
Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host str
- id str
- metric str
- name str
- Index name
- spec
Get
Spec - status
Get
Status - Mapping[str, str]
- vector_
type str
- deletion
Protection String - dimension Number
- embed Property Map
- Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host String
- id String
- metric String
- name String
- Index name
- spec Property Map
- status Property Map
- Map<String>
- vector
Type String
Supporting Types
GetEmbed
- Dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- Field
Map Dictionary<string, string> - Identifies the name of the text field from your document model that will be embedded.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- Model string
- the name of the embedding model to use for the index.
- Read
Parameters Dictionary<string, string> - The read parameters for the embedding model.
- Vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- Write
Parameters Dictionary<string, string> - The write parameters for the embedding model.
- Dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- Field
Map map[string]string - Identifies the name of the text field from your document model that will be embedded.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- Model string
- the name of the embedding model to use for the index.
- Read
Parameters map[string]string - The read parameters for the embedding model.
- Vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- Write
Parameters map[string]string - The write parameters for the embedding model.
- dimension Integer
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map Map<String,String> - Identifies the name of the text field from your document model that will be embedded.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model String
- the name of the embedding model to use for the index.
- read
Parameters Map<String,String> - The read parameters for the embedding model.
- vector
Type String - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters Map<String,String> - The write parameters for the embedding model.
- dimension number
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map {[key: string]: string} - Identifies the name of the text field from your document model that will be embedded.
- metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model string
- the name of the embedding model to use for the index.
- read
Parameters {[key: string]: string} - The read parameters for the embedding model.
- vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters {[key: string]: string} - The write parameters for the embedding model.
- dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- field_
map Mapping[str, str] - Identifies the name of the text field from your document model that will be embedded.
- metric str
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model str
- the name of the embedding model to use for the index.
- read_
parameters Mapping[str, str] - The read parameters for the embedding model.
- vector_
type str - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write_
parameters Mapping[str, str] - The write parameters for the embedding model.
- dimension Number
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map Map<String> - Identifies the name of the text field from your document model that will be embedded.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model String
- the name of the embedding model to use for the index.
- read
Parameters Map<String> - The read parameters for the embedding model.
- vector
Type String - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters Map<String> - The write parameters for the embedding model.
GetSpec
- Pod
Pinecone
Database. Pinecone. Inputs. Get Spec Pod - Configuration needed to deploy a pod-based index.
- Serverless
Pinecone
Database. Pinecone. Inputs. Get Spec Serverless - Configuration needed to deploy a serverless index.
- Pod
Get
Spec Pod - Configuration needed to deploy a pod-based index.
- Serverless
Get
Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Get
Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Get
Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Get
Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Get
Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Get
Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Get
Spec Serverless - Configuration needed to deploy a serverless index.
- pod Property Map
- Configuration needed to deploy a pod-based index.
- serverless Property Map
- Configuration needed to deploy a serverless index.
GetSpecPod
- Environment string
- The environment where the index is hosted.
- Metadata
Config PineconeDatabase. Pinecone. Inputs. Get Spec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- Pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- Pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- Replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- Source
Collection string - The name of the collection to create an index from.
- Environment string
- The environment where the index is hosted.
- Metadata
Config GetSpec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- Pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- Pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- Replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- Source
Collection string - The name of the collection to create an index from.
- environment String
- The environment where the index is hosted.
- metadata
Config GetSpec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pod
Type String - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- pods Integer
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas Integer
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- Integer
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection String - The name of the collection to create an index from.
- environment string
- The environment where the index is hosted.
- metadata
Config GetSpec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- pods number
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas number
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- number
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection string - The name of the collection to create an index from.
- environment str
- The environment where the index is hosted.
- metadata_
config GetSpec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pod_
type str - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source_
collection str - The name of the collection to create an index from.
- environment String
- The environment where the index is hosted.
- metadata
Config Property Map - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pod
Type String - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- pods Number
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas Number
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- Number
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection String - The name of the collection to create an index from.
GetSpecPodMetadataConfig
- Indexeds List<string>
- The indexed fields.
- Indexeds []string
- The indexed fields.
- indexeds List<String>
- The indexed fields.
- indexeds string[]
- The indexed fields.
- indexeds Sequence[str]
- The indexed fields.
- indexeds List<String>
- The indexed fields.
GetSpecServerless
GetStatus
Package Details
- Repository
- pinecone pinecone-io/pulumi-pinecone
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
pineconeTerraform Provider.
