pinecone.Index
The pinecone.Index resource lets you create and manage indexes in Pinecone. Learn more about indexes in the docs.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as pinecone from "@pulumi/pinecone";
const test = new pinecone.Index("test", {
name: "tftestindex",
dimension: 10,
spec: {
serverless: {
cloud: "aws",
region: "us-west-2",
},
},
});
import pulumi
import pulumi_pinecone as pinecone
test = pinecone.Index("test",
name="tftestindex",
dimension=10,
spec={
"serverless": {
"cloud": "aws",
"region": "us-west-2",
},
})
package main
import (
"github.com/pulumi/pulumi-terraform-provider/sdks/go/pinecone/v2/pinecone"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := pinecone.NewIndex(ctx, "test", &pinecone.IndexArgs{
Name: pulumi.String("tftestindex"),
Dimension: pulumi.Float64(10),
Spec: &pinecone.IndexSpecArgs{
Serverless: &pinecone.IndexSpecServerlessArgs{
Cloud: pulumi.String("aws"),
Region: pulumi.String("us-west-2"),
},
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Pinecone = Pulumi.Pinecone;
return await Deployment.RunAsync(() =>
{
var test = new Pinecone.Index("test", new()
{
Name = "tftestindex",
Dimension = 10,
Spec = new Pinecone.Inputs.IndexSpecArgs
{
Serverless = new Pinecone.Inputs.IndexSpecServerlessArgs
{
Cloud = "aws",
Region = "us-west-2",
},
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.pinecone.Index;
import com.pulumi.pinecone.IndexArgs;
import com.pulumi.pinecone.inputs.IndexSpecArgs;
import com.pulumi.pinecone.inputs.IndexSpecServerlessArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var test = new Index("test", IndexArgs.builder()
.name("tftestindex")
.dimension(10.0)
.spec(IndexSpecArgs.builder()
.serverless(IndexSpecServerlessArgs.builder()
.cloud("aws")
.region("us-west-2")
.build())
.build())
.build());
}
}
resources:
test:
type: pinecone:Index
properties:
name: tftestindex
dimension: 10
spec:
serverless:
cloud: aws
region: us-west-2
Create Index Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Index(name: string, args?: IndexArgs, opts?: CustomResourceOptions);@overload
def Index(resource_name: str,
args: Optional[IndexArgs] = None,
opts: Optional[ResourceOptions] = None)
@overload
def Index(resource_name: str,
opts: Optional[ResourceOptions] = None,
deletion_protection: Optional[str] = None,
dimension: Optional[int] = None,
embed: Optional[IndexEmbedArgs] = None,
metric: Optional[str] = None,
name: Optional[str] = None,
spec: Optional[IndexSpecArgs] = None,
tags: Optional[Mapping[str, str]] = None,
timeouts: Optional[IndexTimeoutsArgs] = None,
vector_type: Optional[str] = None)func NewIndex(ctx *Context, name string, args *IndexArgs, opts ...ResourceOption) (*Index, error)public Index(string name, IndexArgs? args = null, CustomResourceOptions? opts = null)type: pinecone:Index
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args IndexArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args IndexArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args IndexArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args IndexArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args IndexArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var indexResource = new Pinecone.Index("indexResource", new()
{
DeletionProtection = "string",
Dimension = 0,
Embed = new Pinecone.Inputs.IndexEmbedArgs
{
Dimension = 0,
FieldMap =
{
{ "string", "string" },
},
Metric = "string",
Model = "string",
ReadParameters =
{
{ "string", "string" },
},
VectorType = "string",
WriteParameters =
{
{ "string", "string" },
},
},
Metric = "string",
Name = "string",
Spec = new Pinecone.Inputs.IndexSpecArgs
{
Pod = new Pinecone.Inputs.IndexSpecPodArgs
{
Environment = "string",
PodType = "string",
MetadataConfig = new Pinecone.Inputs.IndexSpecPodMetadataConfigArgs
{
Indexeds = new[]
{
"string",
},
},
Pods = 0,
Replicas = 0,
Shards = 0,
SourceCollection = "string",
},
Serverless = new Pinecone.Inputs.IndexSpecServerlessArgs
{
Cloud = "string",
Region = "string",
},
},
Tags =
{
{ "string", "string" },
},
Timeouts = new Pinecone.Inputs.IndexTimeoutsArgs
{
Create = "string",
Delete = "string",
},
VectorType = "string",
});
example, err := pinecone.NewIndex(ctx, "indexResource", &pinecone.IndexArgs{
DeletionProtection: pulumi.String("string"),
Dimension: pulumi.Int(0),
Embed: &pinecone.IndexEmbedArgs{
Dimension: pulumi.Int(0),
FieldMap: pulumi.StringMap{
"string": pulumi.String("string"),
},
Metric: pulumi.String("string"),
Model: pulumi.String("string"),
ReadParameters: pulumi.StringMap{
"string": pulumi.String("string"),
},
VectorType: pulumi.String("string"),
WriteParameters: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
Metric: pulumi.String("string"),
Name: pulumi.String("string"),
Spec: &pinecone.IndexSpecArgs{
Pod: &pinecone.IndexSpecPodArgs{
Environment: pulumi.String("string"),
PodType: pulumi.String("string"),
MetadataConfig: &pinecone.IndexSpecPodMetadataConfigArgs{
Indexeds: pulumi.StringArray{
pulumi.String("string"),
},
},
Pods: pulumi.Int(0),
Replicas: pulumi.Int(0),
Shards: pulumi.Int(0),
SourceCollection: pulumi.String("string"),
},
Serverless: &pinecone.IndexSpecServerlessArgs{
Cloud: pulumi.String("string"),
Region: pulumi.String("string"),
},
},
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
Timeouts: &pinecone.IndexTimeoutsArgs{
Create: pulumi.String("string"),
Delete: pulumi.String("string"),
},
VectorType: pulumi.String("string"),
})
var indexResource = new Index("indexResource", IndexArgs.builder()
.deletionProtection("string")
.dimension(0)
.embed(IndexEmbedArgs.builder()
.dimension(0)
.fieldMap(Map.of("string", "string"))
.metric("string")
.model("string")
.readParameters(Map.of("string", "string"))
.vectorType("string")
.writeParameters(Map.of("string", "string"))
.build())
.metric("string")
.name("string")
.spec(IndexSpecArgs.builder()
.pod(IndexSpecPodArgs.builder()
.environment("string")
.podType("string")
.metadataConfig(IndexSpecPodMetadataConfigArgs.builder()
.indexeds("string")
.build())
.pods(0)
.replicas(0)
.shards(0)
.sourceCollection("string")
.build())
.serverless(IndexSpecServerlessArgs.builder()
.cloud("string")
.region("string")
.build())
.build())
.tags(Map.of("string", "string"))
.timeouts(IndexTimeoutsArgs.builder()
.create("string")
.delete("string")
.build())
.vectorType("string")
.build());
index_resource = pinecone.Index("indexResource",
deletion_protection="string",
dimension=0,
embed={
"dimension": 0,
"field_map": {
"string": "string",
},
"metric": "string",
"model": "string",
"read_parameters": {
"string": "string",
},
"vector_type": "string",
"write_parameters": {
"string": "string",
},
},
metric="string",
name="string",
spec={
"pod": {
"environment": "string",
"pod_type": "string",
"metadata_config": {
"indexeds": ["string"],
},
"pods": 0,
"replicas": 0,
"shards": 0,
"source_collection": "string",
},
"serverless": {
"cloud": "string",
"region": "string",
},
},
tags={
"string": "string",
},
timeouts={
"create": "string",
"delete": "string",
},
vector_type="string")
const indexResource = new pinecone.Index("indexResource", {
deletionProtection: "string",
dimension: 0,
embed: {
dimension: 0,
fieldMap: {
string: "string",
},
metric: "string",
model: "string",
readParameters: {
string: "string",
},
vectorType: "string",
writeParameters: {
string: "string",
},
},
metric: "string",
name: "string",
spec: {
pod: {
environment: "string",
podType: "string",
metadataConfig: {
indexeds: ["string"],
},
pods: 0,
replicas: 0,
shards: 0,
sourceCollection: "string",
},
serverless: {
cloud: "string",
region: "string",
},
},
tags: {
string: "string",
},
timeouts: {
create: "string",
"delete": "string",
},
vectorType: "string",
});
type: pinecone:Index
properties:
deletionProtection: string
dimension: 0
embed:
dimension: 0
fieldMap:
string: string
metric: string
model: string
readParameters:
string: string
vectorType: string
writeParameters:
string: string
metric: string
name: string
spec:
pod:
environment: string
metadataConfig:
indexeds:
- string
podType: string
pods: 0
replicas: 0
shards: 0
sourceCollection: string
serverless:
cloud: string
region: string
tags:
string: string
timeouts:
create: string
delete: string
vectorType: string
Index Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Index resource accepts the following input properties:
- Deletion
Protection string - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- Dimension int
- The dimensions of the vectors to be inserted in the index
- Embed
Pinecone
Database. Pinecone. Inputs. Index Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- Name string
- The name of the index to be created. The maximum length is 45 characters.
- Spec
Pinecone
Database. Pinecone. Inputs. Index Spec - Spec
- Dictionary<string, string>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- Timeouts
Pinecone
Database. Pinecone. Inputs. Index Timeouts - Vector
Type string - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- Deletion
Protection string - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- Dimension int
- The dimensions of the vectors to be inserted in the index
- Embed
Index
Embed Args - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- Name string
- The name of the index to be created. The maximum length is 45 characters.
- Spec
Index
Spec Args - Spec
- map[string]string
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- Timeouts
Index
Timeouts Args - Vector
Type string - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- deletion
Protection String - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- dimension Integer
- The dimensions of the vectors to be inserted in the index
- embed
Index
Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- name String
- The name of the index to be created. The maximum length is 45 characters.
- spec
Index
Spec - Spec
- Map<String,String>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- timeouts
Index
Timeouts - vector
Type String - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- deletion
Protection string - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- dimension number
- The dimensions of the vectors to be inserted in the index
- embed
Index
Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- name string
- The name of the index to be created. The maximum length is 45 characters.
- spec
Index
Spec - Spec
- {[key: string]: string}
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- timeouts
Index
Timeouts - vector
Type string - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- deletion_
protection str - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- dimension int
- The dimensions of the vectors to be inserted in the index
- embed
Index
Embed Args - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- metric str
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- name str
- The name of the index to be created. The maximum length is 45 characters.
- spec
Index
Spec Args - Spec
- Mapping[str, str]
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- timeouts
Index
Timeouts Args - vector_
type str - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- deletion
Protection String - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- dimension Number
- The dimensions of the vectors to be inserted in the index
- embed Property Map
- Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- name String
- The name of the index to be created. The maximum length is 45 characters.
- spec Property Map
- Spec
- Map<String>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- timeouts Property Map
- vector
Type String - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
Outputs
All input properties are implicitly available as output properties. Additionally, the Index resource produces the following output properties:
- Host string
- The URL address where the index is hosted.
- Id string
- The provider-assigned unique ID for this managed resource.
- Status
Pinecone
Database. Pinecone. Outputs. Index Status - Status
- Host string
- The URL address where the index is hosted.
- Id string
- The provider-assigned unique ID for this managed resource.
- Status
Index
Status - Status
- host String
- The URL address where the index is hosted.
- id String
- The provider-assigned unique ID for this managed resource.
- status
Index
Status - Status
- host string
- The URL address where the index is hosted.
- id string
- The provider-assigned unique ID for this managed resource.
- status
Index
Status - Status
- host str
- The URL address where the index is hosted.
- id str
- The provider-assigned unique ID for this managed resource.
- status
Index
Status - Status
- host String
- The URL address where the index is hosted.
- id String
- The provider-assigned unique ID for this managed resource.
- status Property Map
- Status
Look up Existing Index Resource
Get an existing Index resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: IndexState, opts?: CustomResourceOptions): Index@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
deletion_protection: Optional[str] = None,
dimension: Optional[int] = None,
embed: Optional[IndexEmbedArgs] = None,
host: Optional[str] = None,
metric: Optional[str] = None,
name: Optional[str] = None,
spec: Optional[IndexSpecArgs] = None,
status: Optional[IndexStatusArgs] = None,
tags: Optional[Mapping[str, str]] = None,
timeouts: Optional[IndexTimeoutsArgs] = None,
vector_type: Optional[str] = None) -> Indexfunc GetIndex(ctx *Context, name string, id IDInput, state *IndexState, opts ...ResourceOption) (*Index, error)public static Index Get(string name, Input<string> id, IndexState? state, CustomResourceOptions? opts = null)public static Index get(String name, Output<String> id, IndexState state, CustomResourceOptions options)resources: _: type: pinecone:Index get: id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Deletion
Protection string - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- Dimension int
- The dimensions of the vectors to be inserted in the index
- Embed
Pinecone
Database. Pinecone. Inputs. Index Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Host string
- The URL address where the index is hosted.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- Name string
- The name of the index to be created. The maximum length is 45 characters.
- Spec
Pinecone
Database. Pinecone. Inputs. Index Spec - Spec
- Status
Pinecone
Database. Pinecone. Inputs. Index Status - Status
- Dictionary<string, string>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- Timeouts
Pinecone
Database. Pinecone. Inputs. Index Timeouts - Vector
Type string - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- Deletion
Protection string - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- Dimension int
- The dimensions of the vectors to be inserted in the index
- Embed
Index
Embed Args - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Host string
- The URL address where the index is hosted.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- Name string
- The name of the index to be created. The maximum length is 45 characters.
- Spec
Index
Spec Args - Spec
- Status
Index
Status Args - Status
- map[string]string
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- Timeouts
Index
Timeouts Args - Vector
Type string - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- deletion
Protection String - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- dimension Integer
- The dimensions of the vectors to be inserted in the index
- embed
Index
Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host String
- The URL address where the index is hosted.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- name String
- The name of the index to be created. The maximum length is 45 characters.
- spec
Index
Spec - Spec
- status
Index
Status - Status
- Map<String,String>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- timeouts
Index
Timeouts - vector
Type String - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- deletion
Protection string - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- dimension number
- The dimensions of the vectors to be inserted in the index
- embed
Index
Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host string
- The URL address where the index is hosted.
- metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- name string
- The name of the index to be created. The maximum length is 45 characters.
- spec
Index
Spec - Spec
- status
Index
Status - Status
- {[key: string]: string}
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- timeouts
Index
Timeouts - vector
Type string - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- deletion_
protection str - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- dimension int
- The dimensions of the vectors to be inserted in the index
- embed
Index
Embed Args - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host str
- The URL address where the index is hosted.
- metric str
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- name str
- The name of the index to be created. The maximum length is 45 characters.
- spec
Index
Spec Args - Spec
- status
Index
Status Args - Status
- Mapping[str, str]
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- timeouts
Index
Timeouts Args - vector_
type str - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
- deletion
Protection String - Whether deletion protection for the index is enabled. You can use 'enabled', or 'disabled'.
- dimension Number
- The dimensions of the vectors to be inserted in the index
- embed Property Map
- Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host String
- The URL address where the index is hosted.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
- name String
- The name of the index to be created. The maximum length is 45 characters.
- spec Property Map
- Spec
- status Property Map
- Status
- Map<String>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- timeouts Property Map
- vector
Type String - The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
Supporting Types
IndexEmbed, IndexEmbedArgs
- Dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- Field
Map Dictionary<string, string> - Identifies the name of the text field from your document model that will be embedded.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- Model string
- the name of the embedding model to use for the index.
- Read
Parameters Dictionary<string, string> - The read parameters for the embedding model.
- Vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- Write
Parameters Dictionary<string, string> - The write parameters for the embedding model.
- Dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- Field
Map map[string]string - Identifies the name of the text field from your document model that will be embedded.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- Model string
- the name of the embedding model to use for the index.
- Read
Parameters map[string]string - The read parameters for the embedding model.
- Vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- Write
Parameters map[string]string - The write parameters for the embedding model.
- dimension Integer
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map Map<String,String> - Identifies the name of the text field from your document model that will be embedded.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model String
- the name of the embedding model to use for the index.
- read
Parameters Map<String,String> - The read parameters for the embedding model.
- vector
Type String - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters Map<String,String> - The write parameters for the embedding model.
- dimension number
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map {[key: string]: string} - Identifies the name of the text field from your document model that will be embedded.
- metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model string
- the name of the embedding model to use for the index.
- read
Parameters {[key: string]: string} - The read parameters for the embedding model.
- vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters {[key: string]: string} - The write parameters for the embedding model.
- dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- field_
map Mapping[str, str] - Identifies the name of the text field from your document model that will be embedded.
- metric str
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model str
- the name of the embedding model to use for the index.
- read_
parameters Mapping[str, str] - The read parameters for the embedding model.
- vector_
type str - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write_
parameters Mapping[str, str] - The write parameters for the embedding model.
- dimension Number
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map Map<String> - Identifies the name of the text field from your document model that will be embedded.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model String
- the name of the embedding model to use for the index.
- read
Parameters Map<String> - The read parameters for the embedding model.
- vector
Type String - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters Map<String> - The write parameters for the embedding model.
IndexSpec, IndexSpecArgs
- Pod
Pinecone
Database. Pinecone. Inputs. Index Spec Pod - Configuration needed to deploy a pod-based index.
- Serverless
Pinecone
Database. Pinecone. Inputs. Index Spec Serverless - Configuration needed to deploy a serverless index.
- Pod
Index
Spec Pod - Configuration needed to deploy a pod-based index.
- Serverless
Index
Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Index
Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Index
Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Index
Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Index
Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Index
Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Index
Spec Serverless - Configuration needed to deploy a serverless index.
- pod Property Map
- Configuration needed to deploy a pod-based index.
- serverless Property Map
- Configuration needed to deploy a serverless index.
IndexSpecPod, IndexSpecPodArgs
- Environment string
- The environment where the index is hosted.
- Pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- Metadata
Config PineconeDatabase. Pinecone. Inputs. Index Spec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- Pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- Replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- Source
Collection string - The name of the collection to create an index from.
- Environment string
- The environment where the index is hosted.
- Pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- Metadata
Config IndexSpec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- Pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- Replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- Source
Collection string - The name of the collection to create an index from.
- environment String
- The environment where the index is hosted.
- pod
Type String - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- metadata
Config IndexSpec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pods Integer
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas Integer
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- Integer
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection String - The name of the collection to create an index from.
- environment string
- The environment where the index is hosted.
- pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- metadata
Config IndexSpec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pods number
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas number
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- number
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection string - The name of the collection to create an index from.
- environment str
- The environment where the index is hosted.
- pod_
type str - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- metadata_
config IndexSpec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source_
collection str - The name of the collection to create an index from.
- environment String
- The environment where the index is hosted.
- pod
Type String - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- metadata
Config Property Map - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pods Number
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas Number
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- Number
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection String - The name of the collection to create an index from.
IndexSpecPodMetadataConfig, IndexSpecPodMetadataConfigArgs
- Indexeds List<string>
- The indexed fields.
- Indexeds []string
- The indexed fields.
- indexeds List<String>
- The indexed fields.
- indexeds string[]
- The indexed fields.
- indexeds Sequence[str]
- The indexed fields.
- indexeds List<String>
- The indexed fields.
IndexSpecServerless, IndexSpecServerlessArgs
IndexStatus, IndexStatusArgs
IndexTimeouts, IndexTimeoutsArgs
- Create string
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Delete string
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Create string
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Delete string
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create String
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete String
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create string
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete string
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create str
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete str
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create String
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete String
- Timeout defaults to 5 mins. Accepts a string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
Package Details
- Repository
- pinecone pinecone-io/pulumi-pinecone
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
pineconeTerraform Provider.
